Eilenberg–Watts Theorem for 2-categories and quasi-monoidal structures for module categories over bialgebroid categories
نویسندگان
چکیده
منابع مشابه
A note on the biadjunction between 2-categories of traced monoidal categories and tortile monoidal categories
We illustrate a minor error in the biadjointness result for 2-categories of traced monoidal categories and tortile monoidal categories stated by Joyal, Street and Verity. We also show that the biadjointness holds after suitably changing the definition of 2-cells. In the seminal paper “Traced Monoidal Categories” by Joyal, Street and Verity [4], it is claimed that the Int-construction gives a le...
متن کاملEntwining Structures in Monoidal Categories
Interpreting entwining structures as special instances of J. Beck’s distributive law, the concept of entwining module can be generalized for the setting of arbitrary monoidal category. In this paper, we use the distributive law formalism to extend in this setting basic properties of entwining modules.
متن کاملEnrichment over iterated monoidal categories
Joyal and Street note in their paper on braided monoidal categories [9] that the 2–category V –Cat of categories enriched over a braided monoidal category V is not itself braided in any way that is based upon the braiding of V . The exception that they mention is the case in which V is symmetric, which leads to V –Cat being symmetric as well. The symmetry in V –Cat is based upon the symmetry of...
متن کاملCategories and Quantum Informatics: Monoidal categories
A monoidal category is a category equipped with extra data, describing how objects and morphisms can be combined ‘in parallel’. This chapter introduces the theory of monoidal categories, and shows how our example categories Hilb, Set and Rel can be given a monoidal structure. We also introduce a visual notation called the graphical calculus, which provides an intuitive and powerful way to work ...
متن کاملUniversal Constructions for (Co)Relations: categories, monoidal categories, and props
Calculi of string diagrams are increasingly used to present the syntax and algebraic structure of various families of circuits, including signal flow graphs, electrical circuits and quantum processes. In many such approaches, the semantic interpretation for diagrams is given in terms of relations or corelations (generalised equivalence relations) of some kind. In this paper we show how semantic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2016
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2016.02.009